38 research outputs found

    Information efficient 3D visual SLAM in unstructured domains

    Full text link
    This paper presents a strategy for increasing the efficiency of simultaneous localisation and mapping (SLAM) in unknown and unstructured environments using a vision-based sensory package. Traditional feature-based SLAM, using either the Extended Kalman Filter (EKF) or its dual, the Extended Information Filter (EIF), leads to heavy computational costs while the environment expands and the number of features increases. In this paper we propose an algorithm to reduce computational cost for real-time systems by giving robots the 'intelligence' to select, out of the steadily collected data, the maximally informative observations to be used in the estimation process. We show that, although the actual evaluation of information gain for each frame introduces an additional computational cost, the overall efficiency is significantly increased by keeping the matrix compact. The noticeable advantage of this strategy is that the continuously gathered data is not heuristically segmented prior to be input to the filter. Quite the opposite, the scheme lends itself to be statistically optimal. © 2007 IEEE

    Towards vision based navigation in large indoor environments

    Full text link
    The main contribution of this paper is a novel stereo-based algorithm which serves as a tool to examine the viability of stereo vision solutions to the simultaneous localisation and mapping (SLAM) for large indoor environments. Using features extracted from the scale invariant feature transform (SIFT) and depth maps from a small vision system (SVS) stereo head, an extended Kalman fllter (EKF) based SLAM algorithm, that allows the independent use of information relating to depth and bearing, is developed. By means of a map pruning strategy for managing the computational cost, it is demonstrated that statistically consistent location estimates can be generated for a small (6 m × 6 m) structured office environment, and in a robotics search and rescue arena of similar size. It is shown that in a larger office environment, the proposed algorithm generates location estimates which are topologically correct, but statistically inconsistent. A discussion on the possible reasons for the inconsistency is presented. The paper highlights that, despite recent advances, building accurate geometric maps of large environments with vision only sensing is still a challenging task. ©2006 IEEE

    Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice

    Full text link
    The mouse mutant mnd2 (motor neuron degeneration 2) exhibits muscle wasting, neurodegeneration, involution of the spleen and thymus, and death by 40 days of age(1,2). Degeneration of striatal neurons, with astrogliosis and microglia activation, begins at around 3 weeks of age, and other neurons are affected at later stages'. Here we have identified the mnd2 mutation as the missense mutation Ser276Cys in the protease domain of the nuclear-encoded mitochondrial serine protease Omi (also known as HtrA2 or Prss25). Protease activity of Omi is greatly reduced in tissues of mnd2 mice but is restored in mice rescued by a bacterial artificial chromosome transgene containing the wildtype Omi gene. Deletion of the PDZ domain partially restores protease activity to the inactive recombinant Omi protein carrying the Ser276Cys mutation, suggesting that the mutation impairs substrate access or binding to the active site pocket. Loss of Omi protease activity increases the susceptibility of mitochondria to induction of the permeability transition, and increases the sensitivity of mouse embryonic fibroblasts to stress-induced cell death. The neurodegeneration and juvenile lethality in mnd2 mice result from this defect in mitochondrial Omi protease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62561/1/nature02052.pd

    Influence of phase transformation on the creep deformation mechanism of SA508 Gr.3 steel for nuclear reactor pressure vessels

    No full text
    This study analyzed the effect of phase transformation on the creep behavior and deformation mechanism of SA508 Gr.3 steel used for nuclear reactor pressure vessels (RPVs). The creep tests were conducted on the steel at the temperatures from 650 to 800 °C at a stress ranging from 15 to 80 MPa. Detailed microstructural examination and theoretical analysis were conducted on the specimens to investigate the creep mechanism in each testing condition. The results showed that phase transformation induced an increase in the minimum creep rate and a decline in creep life. Based on the calculations of stress exponents, activation energies, Larson-Miller and Orr-Sherby-Dorn parameters, the creep deformation and fracture behavior were deemed to be different before and after phase transformation. Before the phase transformation, the predominant creep-deformation mechanism was dislocation gliding whereas it was converted to dislocation climbing after the phase transformation. During the phase transformation, the dislocation gliding coupled with grain-boundary sliding became the rate-controlling creep mechanism. This study provides a comprehensive insight into understanding the creep deformation of the RPV steel, giving a direct guideline to optimize the parameters for in-vessel retention strategies
    corecore